Bulk nanocrystalline steel
نویسنده
چکیده
Most new materials are introduced by selectively comparing their properties against those of steels. Steels set this standard because iron and its alloys have so much potential that new concepts are discovered and implemented with notorious regularity. In this 52nd Hatfield Memorial Lecture, a remarkably beautiful microstructure consisting of slender crystals of ferrite, whose controlling scale compares well with that of carbon nanotubes, is described. The crystals are generated by the partial transformation of austenite, resulting in an extraordinary combination of strength, hardness and toughness. All this in bulk steel without the use of expensive alloying elements. We now have a strong alloy of iron, which can be used for making items that are large in all three dimensions, which can be made without the need for mechanical processing or rapid cooling and which is cheap to produce and apply.
منابع مشابه
Comparative study on corrosion resistance and in vitro biocompatibility of bulk nanocrystalline and microcrystalline biomedical 304 stainless steel.
OBJECTIVES SUS 304 stainless steels have been widely used in orthodontics and implants such as archwires, brackets, and screws. The purpose of present study was to investigate the biocompatibility of both the commercial microcrystalline biomedical 304 stainless steel (microcrystalline 304ss) and novel-fabricated nanocrystalline 304 stainless steel (nanocrystalline 304ss). METHODS Bulk nanocry...
متن کاملWear behavior of carbon steel electrodeposited by nanocrystalline Ni–W coating
Ni-W coatings, compared to pure nanocrystalline Ni, exhibit higher hardness and wear resistance. In some cases, these coatings are considered as environmental friendly alternatives for hard chromium coating. Till now, most of Ni-W coatings have been produced by direct current electrodeposition from alkaline baths. In this study square pulse current was used for deposition of Ni-W precipitates f...
متن کاملSegregation stabilizes nanocrystalline bulk steel with near theoretical strength.
Grain refinement through severe plastic deformation enables synthesis of ultrahigh-strength nanostructured materials. Two challenges exist in that context: First, deformation-driven grain refinement is limited by dynamic dislocation recovery and crystal coarsening due to capillary driving forces; second, grain boundary sliding and hence softening occur when the grain size approaches several nan...
متن کاملDislocation–Twin Boundary Interactions Induced Nanocrystalline via SPD Processing in Bulk Metals
This report investigated dislocation-twin boundary (TB) interactions that cause the TB to disappear and turn into a high-angle grain boundary (GB). The evolution of the microstructural characteristics of Hadfield steel was shown as a function of severe plastic deformation processing time. Sessile Frank partial dislocations and/or sessile unit dislocations were formed on the TB through possible ...
متن کاملImprove oxidation resistance at high temperature by nanocrystalline surface layer
An interesting change of scale sequence occurred during oxidation of nanocrystalline surface layer by means of a surface mechanical attrition treatment. The three-layer oxide structure from the surface towards the matrix is Fe3O4, spinel FeCr2O4 and corundum (Fe,Cr)2O3, which is different from the typical two-layer scale consisted of an Fe3O4 outer layer and an FeCr2O4 inner layer in convention...
متن کامل